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Abstract. In this position paper we argue that the best way to overcome the noto-
rious knowledge bottleneck in AI is using lifelong learning by social intelligent
agents. Keys to this capability are deep language understanding, dialog inter-
action, sufficiently broad-coverage and fine-grain knowledge bases to bootstrap
the learning process, and the agent’s operation within a comprehensive cognitive
architecture.
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The dominant AI paradigm today, which involves sophisticated analogical reasoning
using machine learning, geared toward modeling the structure and processes of the
human brain, not the content that drives its functioning. As a result, the emphasis in
applications involving language processing is on developing sophisticated methods for
manipulating uninterpreted results of perception (such as textual strings). This app-
roach has a core weakness: the inability of systems to carry out self-aware reasoning
or realistically explain their behavior. Attaining human-level performance in artificial
intelligent agents is predicated onmodeling how the architectures and algorithms used in
implementing such agents handle the knowledge supporting decision-making, especially
when related to conscious, deliberate behavior. Sufficient amounts of different kinds of
knowledge must be amassed to emulate the knowledge humans have at their disposal
to support commonsense decision-making during a variety of perception interpretation,
reasoning, and action-oriented tasks. The availability of such knowledge to the artificial
intelligent agents is, thus, a core prerequisite for this program of work. The conceptual
complexities and the slow pace of the knowledge acquisition efforts in the classical
AI paradigm led most of the AI practitioners to the conclusion that the field is facing
an insurmountable “knowledge bottleneck.” So, the task of knowledge acquisition was
deemed to be impossible to tackle directly. Hence the well-known paradigm shift toward
empirical methods.

Still, if the goal is developing systems that claim tomodel conscious human function-
ing, ignoring the “knowledge bottleneck” is not an option. Systems that aspire to emu-
late human capabilities of understanding, reasoning and explanation must constructively
address the issue of knowledge acquisition and maintenance, which is a prerequisite for
sustaining the lifelong operation of knowledge-based reasoning systems. This objective
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is one of the central directions of R&D in our work on developing language-endowed
intelligent agent (LEIA) systems. In the most general terms, our approach to overcom-
ing the knowledge bottleneck is to develop agents (LEIAs) that can learn knowledge
automatically by understanding natural language texts and dialog utterances. This can
only be facilitated by the availability of a language interpreter system that extracts --
and represents in a metalanguage anchored in a formal ontological model of the world
– the semantic and pragmatic/discourse meanings of natural language utterances and
text. Such a system, in turn, would require significant knowledge support.

Over the past several decades, our team has developed a comprehensive language
interpreter, OntoSem (the latest version is described in some detail in [1]), whose sup-
porting knowledge resources include the ontological world model of ~9,000 concepts
(~165,000 RDF triples) and the English semantic lexicon with ~30,000 word senses. In
our R&D on overcoming the knowledge bottleneck we use OntoSem and its knowledge
resources to bootstrap the process of automatic knowledge acquisition through language
understanding.

OntoSem differs from practically all extant semantic and pragmatic analyzers in sev-
eral ways, detailed in [1]: (a) it pursues ontologically-grounded semantic and pragmatic
interpretation of inputs; (b) it determines how deeply to analyze inputs based on action-
ability requirements, which requires integrating reasoning about action with reasoning
about language processing [9]; (c) it tackles a comprehensive inventory of difficult lan-
guage communication phenomena such as lexical and referential ambiguity, fragments,
ellipsis, implicatures, production errors, and many more; and (d) it facilitates lifelong
learning – of lexical units in the lexicon as well as concepts and concept properties in
the ontology necessary to express the meanings of lexical units.

OntoSem is the language interpretation module of OntoAgent, a cognitive archi-
tecture that serves as a platform for developing LEIA systems [2, 3]. OntoAgent is
implemented as a service-based environment that consists of (a) a network of process-
ing services, (b) a content service (comprised of several non-toy knowledge bases), and
(c) an infrastructure service that supports system functioning, system integration, and
system development activities. [INCLUDE A GENERIC ONTOAGENT DIAGRAM]
OntoAgent operates at a level of abstraction that supports interoperability across the
various perception, reasoning, and action services by standardizing input and output sig-
nals generated by all the “in-house” services. These signals are interoperable Meaning
Representations, called XMRs, in which X is a variable describing a particular type of
meaning – e.g., visual meaning (VMR) or text meaning (TMR). XMRs are formulated
using a uniform knowledge representation schema that is compatible with the represen-
tation of static knowledge resources stored in a LEIA’smemory system. Atoms of XMRs
are semantically interpreted by reference to their descriptions in the LEIA’s ontological
world model, which is an important part of its long-term semantic memory.

To-date, proof-of-concept OntoAgent-based systems have been built that demon-
strate the learning (either through dialog or utterances gleaned from text corpora) of
ontological concepts and their properties; lexicon entries [5, 6], complex events (scripts)
[7, 8] and even elements of the agent’s knowledge about other agents (their “theory of
mind,” goals, plans, personality characteristics, biases, etc. [24]. Work is ongoing on
extending the coverage and the typology of entities that a LEIA can learn. Clearly, a
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lot remains to be done. Strategically, continuing to develop the bootstrapping approach
(with an option for human acquirers to “touch up” the agent’s bootstrapping resources
whenever human resources permit) is the best path toward overcoming the knowledge
acquisition bottleneck. Space limitations do not allow detailed descriptions of any of the
above. In this position paper we, therefore, discuss programmatic matters and refer the
reader to publications where detailed descriptions of relevant phenomena and processes
can be found.

Learning in OntoAgent can operate in an “opportunistic” mode, in which learning
processes are spawned as a consequence of the LEIA’s having encountered lacunae or
inconsistencies in its knowledge resources while performing their regular tasks in what-
ever domain they are implemented. This process aims to model the way humans contin-
uously enrich their vocabularies and their understanding of the world while engaging in
a variety of activities not overtly associated with learning. It is a never-ending process of
continual honing of the understanding of meanings of lexical units that should be very
familiar to anybody who has ever operated in a language environment other than that
of one’s mother tongue. At this point, we concentrate on language inputs but enhancing
the “opportunistic learning” method by taking into account the results of interpretation
of other perception modalities, such as visual scene recognition, is a natural extension.

Inwhat followswe briefly describe two examples of opportunistic learning. Consider
a class of situations in which agents encounter an unknown word or phrase during
language understanding within an application. In such a situation the agents first carry
out a minimum of coarse-grained learning of the meaning of this word with the objective
of generating aminimally acceptable underspecifiedmeaning representation of the input
utterance. This stage of learning relies as supporting knowledge on standard lexicon entry
templates, the results of syntactic parsing, and the semantic analysis of known portions of
the clause (mainly through unidirectional application of selectional restrictions encoded
in lexical entries of known words in the input). For example, if the agent doesn’t know
the word tripe in the input Mary was eating tripe, it will learn a new lexical entry for
tripe and, using the information that a) in the input sentence tripe is the direct object
of eat, and b) that direct objects typically link to the theme case role of the concept
underlying the meaning of the verb in the input, have the semantics of tripe tentatively
– pending further downstream specification – interpreted as a member of the ontological
subhierarchy rooted at the concept ingestible, which is the theme of ingest, the
concept used to interpret the semantics of the most frequent sense of the verb eat (For
detailed descriptions and examples of this process see [5, 6].)

Similarly, when an agent encounters an unknown use (lexical sense) of a knownword
or phrase, it coerces the knownmeaning using an inventory of template-conversion rules.
For example, the utteranceMary rulereda pencil to John will be interpreted as (in plain
English, for clarity), ‘Mary transferred possession of a pencil to John using a ruler’
[4]. If the resulting interpretations of such inputs are actionable, the agent need not (at
least immediately) pursue deeper learning. If they are not actionable, then the agent can
attempt to recover in various ways, such as learning by reading from a corpus [5, 6] or
entering into a dialog with a human collaborator (if present).

Anothermode of LEIA learning is deliberate, dedicated learning,meaning that learn-
ing is the specific goal that the LEIA is pursuing at the time. Deliberate learning can
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be realized as interactive learning by instruction, as individual learning by reading or as
a combination of these two methods. (Deliberate learning can also take place without
an immediate perceptual trigger – the agent can use its reasoning capabilities to derive
new knowledge through the application of rules of reasoning over its stored knowledge.
This approach to learning has been in pursued in AI throughout its existence. We do
not address this “internal reasoning” mode of learning in this paper.) The expectation in
deliberate learning is that the natural language inputs to the system are texts or dialog
utterances that are to be interpreted as training instructions.While the dedicated learning
mode can be used to learn ontological concepts and lexical units, an important appli-
cation of this mode is to teach LEIAs how to perform a variety of tasks and how they
should assess various states of the world in preparation to making their decisions about
action. To-date, we have developed and demonstrated two proof-of-concept systems of
deliberate learning by language-based instruction in interactive dialogs between agents
and human team members: a) a LEIA integrated into a furniture-building robot that
learned ontological scripts using language instruction by a human [7, 8], and b) a LEIA
integrated into a self-driving vehicle application that was how to behave in a variety of
situations, such as how to get to various places, how to react to unexpected road hazards
(e.g., a downed tree), and how to behave in complex situations, such as at a four-way
stop [10]. The latter application also incorporated the opportunistic learning mode.

Irrespective of a particular mode, all learning based on language communication is
made possible by close integration of several capabilities of LEIAs: a) advanced, broad-
coverage language understanding; b) reasoning about domain-oriented tasks; and c) a
set of heuristic rules guiding the learning process as such and thus representing LEIA’s
expertise as learners. As already mentioned, all of the above capabilities are predicated
on the availability of a shared knowledge environment that both bootstraps learning and
is continuously expanded and honed as a result of learning.

OntoAgent R&D belongs to the area of cognitive systems (e.g., [11, 12]). A number
of research teams develop architectures that pursue aims that are broadly similar to those
of OntoAgent. Systems and architectures such as DIARC [13], Companions [14], Icarus
[15], Rosie [16] and Arcadia [17] all have salient points of comparison. Fundamental
comparison of these and other systems is not feasible in this space. Here we will briefly
address just a few points related to the scope and integration of language processing into
cognitive architectures.

Within the field of cognitive systems, a growing number of projects has been devoted
several aspects of language understanding, a response to the fact that the knowledge-lean
paradigm currently prevalent in NLP has not been addressing, or therefore serving, the
needs of sophisticated agent systems. For example, Mohan et al. [18] added a language
processing component to a Soar agent, Forbus et al. [19, 20] investigated learning by
reading, Allen et al. [21] demonstrated learning information management tasks through
dialog and capturing user’s operations in a web browser, Scheutz et al. [22] demonstrated
learning objects and events through vision and language, Lindes andLaird [23] integrated
a language understanding module into their Rosie robot.

Several characteristics set OntoAgent-based systems apart from many other contri-
butions in this area [1]. First, they integrate language processing with other perception
modalities (such as interoception and simulated vision) as well as reasoning, action
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and the management of the agent’s episodic, semantic and procedural memory. Second,
and most importantly, the language processing component treats many more linguistic
phenomena than others, and is capable of multiple types of ambiguity resolution that
is seldom if ever addressed in other cognitive systems with language processing capa-
bilities. Third, OntoAgent-based systems learn not only lexicon and ontology but also
scripts, plans and elements of the “theory ofmind” of other agents. One planned enhance-
ment is to include learning entries in the opticon (which is the correlate in the vision
interpretation task of the lexicon in language processing), that will support grounding the
results of language interpretation with the of visually recognized objects and events on
the basis of the ontology underlying both visual and language interpretation in OntoA-
gent. Integration of OntoAgent with an embodied robotic system is reported in (7, 8].
The integration of a simulated vision perception in an autonomous vehicle system with
OntoAgent is reported in [10].

OntoAgent has more features relevant to learning than those space constraints allow
us to present in this position paper. Thus, LEIAs also maintain a long-term episodic
memory of the text and utterances they have processed with OntoSem. This allows the
LEIAs in certain cases to use analogical reasoning to minimize their efforts by retriev-
ing (and then optionally modifying) stored TMRs instead of generating them “from
scratch” using OntoSem. The long-term episodic memory also serves as the repository
of the LEIA’s knowledge about instances (exemplars) of concepts in its ontology, which
facilitates a variety of additional reasoning capabilities, such as inductive learning or the
maintenance of specific memories about other agents.

Another topic that we can only mention in this paper is hybridization of OntoAgent.
At present, OntoAgent-based systems already incorporate results of (imported) modules
(for example, a syntactic parser and a vision perception system) implemented in the
empirical machine learning paradigm. We are working on applying empirical methods
for filtering inputs to the learning-by-reading module of OntoAgent and investigating
integration of these paradigms for the decision-making tasks across all the architecture
modules.

To recap, keys to overcoming the knowledge bottleneck in AI include starting with
sufficiently broad and deep, high-quality bootstrapping knowledge bases (lexicon and
ontology); endowing agents with broad and deep language understanding capabilities;
working within a knowledge-centric agent environment; enabling agents to learn both
independently and in collaboration with people; and strategically keeping human devel-
opers in the loop as knowledge engineers to enforce the high quality of the learned
resources.
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