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Abstract 
We present the purpose, format and content of internal signals exchanged among the processing 
modules of the OntoAgent HRI-oriented architecture. These signals represent the agent’s 
understanding of the situation at hand and motivate its potential response to it. Having been 
formulated in the same ontological framework, they support the use of interpreted input from 
multiple perception sources in the agent’s decision-making and provide input for translating the 
agent’s decisions into physical and verbal action.  

1. Introduction. 
This paper briefly introduces the purpose, format and content of a variety of internal signals 
exchanged among the processing modules of the OntoAgent HRI-oriented architecture. These 
signals represent the results of the agent’s conscious reasoning operations and thus reflect the 
agent’s understanding of the situation at hand and motivate its potential response to it.  In other 
words, these signals convey meaning and are, therefore, collectively referred to as XMRs (MR 
stands for meaning representation). All the XMRs are interoperable because they are based on a 
uniform ontological substrate. XMRs can be divided into input- and output-oriented ones. In a 
robotic system that incorporates OntoAgent (see Figure 1), input XMRs are generated by the 
interpreters of the results of available external perception processing modules, while output XMRs 
provide input to the available effector modules. For example, the recent furniture building 
application, required only the perception modules for vision and language and the effector modules 
for verbal and physical actions. While all these input/output modules are operational at this time, 
they are under continuous development.  
 The interpreters of the percepts yield visual MRs (VMRs) and (input) text MRs (TMRs), 
respectively. On the output side, the decision-making modules must provide action MRs (AMRs) 
to the physical action system and (output) TMRs used by the language generator. Intermodular 
communication is also supported by mental MRs (MMRs) that encode mental actions and are used, 
among other purposes, to update the agent’s situation model, to signal attention needs (e.g., the 
need to instantiate a goal instance), and to trigger any of the several truth maintenance and learning 
actions for the augmentation and improvement of the agent’s memory models.  
 The format of inputs to the perception interpreters in Figure 1 is outside the scope of this paper, 
as is the format of outputs of the two action generators. In the current implementation of the robotic 
system that incorporates OntoAgent, the visual perception interpreter (VPI) that generates VMRs 
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from the output of the dedicated visual perception interpreter and the physical action generator that 
translates AMRs into commands to a robotic action system, are developed to interface with a 
particular robotic system used in this application (Nirenburg et al. 2018). This type of work will 
have to be repeated for each environment in which OntoAgent must be integrated. This requirement 
does not hold for the natural language understander, which is tightly integrated into OntoAgent and 
uses the same decision-making infrastructure and the same set of knowledge resources as the core 

decision-making modules of the OntoAgent. In fact, historically, XMRs are extensions of the TMRs 
that have been used in OntoSem, OntoAgent’s natural language understander, for many years. 
All of the agent’s knowledge is represented in a uniform frame-based representation language. This 
knowledge covers all of the agent’s internal knowledge resources: its long-term semantic memory 
(its ontology), its long-term episodic memory and its situation model (working memory) that 
comprises information about environment, the agent’s goal/plan agenda, input and output XMRs, 
perspectives on other agents, and more. Properties (slots) in all of the frames, irrespective of the 

Figure 1. XMRs in OntoAgent. XMRs are interoperable meaning representations (MRs) that integrate the 
input/output modules with the system’s internal processing modules and its static knowledge resources. We 
illustrate text MRs (TMRs) and visual MRs (VMRs) on the perception side. The system’s planner generates 
action MRs (AMRs) as input for the external motor action module and TMRs as input for the verbal action 
generator module. The planner sends mental MRs (MMRs) to the mental action generation module to signal 
a need for replanning and/or instantiating (new) goals. The mental action generator can also trigger 
replanning independently, through metareasoning. This module also supports truth maintenance (updating 
the situation model) and learning (consolidation of episodic memory and learning of ontology). Specific 
applications might require only a subset of the input and output modalities. Thus, in the current furniture-
building application the input involves only vision and language and the output, only language and physical 
action. Language processing and simulated interoception/physiological action modules are fully integrated 
with the agent, while vision and other perception modalities and motor action are imported and require 
custom interpreters to interact with OntoAgent. The perception interpreters are needed to translate output of 
the native perceptual systems into their corresponding XMRs; on the output side, AMRs must be translated 
into the representation native to a specific robotic motor action system. 
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type of memory for which they are defined, are taken from a single repository in the agent’s 
ontological world model. This ensures semantic cohesion, as these properties are reused across the 
types of XMRs. All individual frames are connected through metalevel relations, forming a single 
directed graph. The resulting graph database is flexible and facilitates an efficient query process. 
We use namespaces to provide soft division of frames in the graph: output XMRs are found in the 
@OUTPUT namespace, ontology is found in the @ONT namespace (which is itself effectively a 
subdivision of the @LTM, or long-term memory, namespace), the situation model is found in the 
@ENV namespace, and so forth. All XMRs also include an anchor section that contains metadata 
that is important for the agent’s reasoning, such as timestamps (when the input was observed, or 
the output was generated), sources (e.g., the speaker for a TMR), and more.  In the sample XMRs 
below, we omit the anchor section for brevity. The examples below are from the joint human-robot 
furniture building application. 
 In the sections that follow we present examples of a TMR, a VMR, an MMR and an AMR   and 
then illustrate the input and output XMRs as they support human-agent interaction.  

2. XMRs: TMRs, VMRs, MMRs and AMRs 

TMRs: Text Meaning Representations. We illustrate an input TMR. The process whereby the 
planner generates an output TMR for the text (dialog turn) generation will be reported separately.  
Below is the TMR for the input Get a foot bracket issued by the user Jake whom the agent knows1: 
@TMR.REQUEST-ACTION.1 = {     /speech act meaning is essential for reasoning and decision-making 
 AGENT     @LTE.HUMAN.35;   /this is the concept instance in episodic memory corresponding to Jake  
 BENEFICIARY  @TMR.ROBOT.0;     /this is a reference to self 
    THEME     @TMR.TAKE.3; };    /the situation model already includes two instances of TAKE 
@TMR.TAKE.3 = { 
 AGENT     @LTE.ROBOT.0; 
    THEME     @TMR.BRACKET.1; }; /this is the first time a bracket was mentioned in the situation 
@TMR.BRACKET.1 = { 
 SIDE-TB    BOTTOM; };    /this is an example of the use of a literal property filler from a predefined set 
VMRs: Visual Meaning Representations. VMRs are produced by a visual perception interpreter 
(VPI). VMRs can represent two main kinds of information: a) timed spatial representations of the 
objects in a scene (that is, what can be seen, where and when) and b) visual events generated by 
reasoning over sequences of scene representations. Suppose the VPI generated the event of Jake 
affixing the foot and front brackets to a dowel. The VMR for this event would look as follows: 
@VMR.ATTACH.1 = { 
 AGENT     @LTE.HUMAN.35;  /Jake was recognized visually. 
    THEME     @LTE.BRACKET.1; 
    THEME     @LTE.BRACKET.2; 
    DESTINATION  @VMR.DOWEL.1; }; 
@VMR.LOCATION.1 = {     /only results of visual perception are included; the system knows much more about Jake! 
 DOMAIN    @LTE.HUMAN.35; 
 RANGE     @VMR.ABSOLUTE-LOCATION.1; 
 IN-FRONT-OF  @ENV.TABLE.1; }; 
@VMR.ABSOLUTE-LOCATION.1 = {…}; /quantitative data location data, with respect to a spatial origin point 

                                                
1 Grounding instances of concepts in the agent’s situation model and long-term episodic memory is an important task in 

input interpretation. It is not discussed in this paper. We will report on our work on grounding separately. 
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The input to the VPI is expected to be a set of quantitative (Kennedy et al. 2007), egocentric or 
allocentric (Klatzky 1998) streams of object data.  It is the job of the VPI to understand the input 
in the context of previously received (and analyzed) visual data, to produce the VMR.  We expect 
this input to include features such as location, heading, axis, and bearing - each with respect to a 
defined spatial origin - these would be represented in the @VMR.ABSOLUTE-LOCATION.1 frame 
above. The VPI will generate agent-oriented relational locations, such as the filler for the property 
IN-FRONT-OF. 
MMRs: Mental Meaning Representations. MMRs are generated by the agent to support any 
number of its reasoning tasks, such as learning or prioritization of agenda. MMRs are considered 
output XMRs, as they are results of the agent’s reasoning. MMR is used to affect a change, albeit 
one that is internal to the agent’s memory. Thus, the MMR reflecting the decision the agent makes 
to start building a chair (made, for example, as a result of processing a human team member’s 
utterance It’s time to start working or one of its paraphrases) will take the form: 
@MMR.ADD-GOAL-INSTANCE.1 = { 
 AGENT   @SELF.ROBOT.0; 
     THEME   @ONT.HAVE-BUILT-A-CHAIR; }; 
Here the MMR is specifying that a new instance of a goal should be added to the agent’s agenda. 
The goal type (non-instanced) is specified. Once the MMR is executed, the agent’s agenda will be 
updated with a new instance of the goal. 
AMRs: Action Meaning Representations. AMRs are signals to the agent’s physical effector 
systems to carry out an action in the world. AMRs represent the meaning of this action, not the 
fine-grained motor control information. The AMR conveying the meaning “I will move the 
screwdriver to the table” looks as follows: 
@AMR.CHANGE-LOCATION.1 = { 
 AGENT     @SELF.ROBOT.0; 
    THEME     @ENV.SCREWDRIVER.13; 
    DESTINATION  @ENV.TABLE.2; }; 
The AMR will need to be post-processed into a series of robot-specific motor control commands. 
The same holds true for output TMRs that are used as inputs to the verbal action generator module 
of the system.  

3. An Example of Human-Agent Interaction 

The example we present shows the XMRs involved in running a portion of a script in our furniture 
assembly domain. The agent receives both TMR and VMR as inputs, and generates MMRs, AMRs 
and TMRs as necessary.  Most of the XMRs reference entities in the agent’s long-term memory, 
which emphasizes the integration of all of the types of agent knowledge to support reasoning. In 
the example scenario, the agent has previously learned (through instruction in natural language, see 
Nirenburg and Wood 2017) how to build a chair. Furthermore, all components required for that 
task are readily available in the environment. The scenario steps are presented below2; the XMRs 
generated while processing it are illustrated in Figure 2. 
 
                                                
2 Space constraints necessitate many simplifications in this presentation. Thus, we do not discuss the mechanism for 

prioritizing the goal/plan agenda, or the particulars of the planning mechanism, or the nature of the various heuristic 
decision functions, or treatment of impasses, or how parallelism is supported by tracking availability of perceptors and 
effectors, or whether XMR signals are transmitted across modules individually or in batches, etc. 
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1. Jake (@LTE.HUMAN.35): <Enters the room>.  
2. Robot (@SELF.ROBOT.0): <Perceives that Jake is in the room> 
3. Robot: <Modifies its agenda: instantiates the goal HAVE-GREETED-HUMAN> 
4. Robot: <prioritizes the above goal, selects a plan for it and carries it out: generates an output 

TMR representing a greeting> 
5. Jake: Issues the utterance: Let’s build a chair. 
6. Robot: <Understands the utterance> 
7. Robot: <Modifies its agenda: instantiates the goal HAVE-BUILT-A-CHAIR> 
8. Robot: <prioritizes the above goal, selects a plan to attain the above goal and generates an 

AMR representing the first action in the plan: to pick up a dowel> 
 

/VMR output at Step 2. Generated by VPI  
 
@VMR.ENTER.1 = { 
 AGENT   @LTE.HUMAN.35; 
 THEME   @ENV.ROOM.1; }; 
 
/MMR output at Step 2. Generated by Attention 
Manager and sent to Situation Model Updater 
 
@MMR.REMEMBER.1 = { 
 AGENT   @SELF.ROBOT.0; 
 THEME   @MMR.LOCATION.1; }; 
 
@MMR.LOCATION.1 = { 
 DOMAIN      @LTE.HUMAN.35; 
 RANGE   @ENV.ROOM.1; }; 
 
/MMR output at Step 3. Generated by  
Attention Manager 
 
@MMR.ADD-GOAL-INSTANCE.1 = { 
 AGENT   @SELF.ROBOT.0; 
 THEME   @ONT.HAVE-GREETED-
HUMAN; }; 
 
/TMR output at Step 4. Generated by Planner 
 
@TMR.GREET.1 = { 
 AGENT   @SELF.ROBOT.0; 
 THEME   @LTE.HUMAN.35; }; 

/TMR output at Step 6. Generated by Natural 
Language Understander 
 
@TMR.REQUEST-ACTION.1 = { 
 AGENT    @LTE.HUMAN.35; 
 BENEFICIARY      @SELF.ROBOT.0; 
 THEME    @TMR.BUILD.1; }; 
@TMR.BUILD.1 = { 
 AGENT    @ENV.HUMAN.1; 
 AGENT    @SELF.ROBOT.0; 
 THEME    @TMR.CHAIR.1; }; 
@TMR.CHAIR.1 = {}; 
 
/MMR output at Step 7. Generated by  
Attention Manager 
 
@MMR.ADD-GOAL-INSTANCE.1 = { 
    AGENT        @SELF.ROBOT.0; 
    THEME         @ONT.HAVE-BUILT-A-CHAIR; 
}; 
 
/AMR output at Step 8. Generated by Planner 
 
@AMR.CHANGE-LOCATION.1 = { 
    AGENT                @SELF.ROBOT.0; 
    THEME                @ENV.DOWEL.1; 
    DESTINATION    @ENV.TABLE.1; }; 

 
Figure 2. XMR signals generated by OntoAgent as integrated into the application in the domain of furniture 
assembly by a human-robotic team. 
 
The robot observes Jake enter the room (Step 1) and passes the signal to the VPI that generates the 
corresponding VMR (Step 2). This causes Attention Manager to update the situation model by 
issuing the MMR signal (consisting in this case of two frames) and instantiate a new goal on the 
agent’s goal/plan agenda (Step 3). When the agenda is prioritized at the next cycle, the associated 
plan to greet the human is selected, and a TMR is generated and passed to the Verbal Action 
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Generator (Step 4). Next, the human makes a request of the robot to begin a task (Step 5). An input 
TMR is produced by the language understander, (Step 6), which causes the agent’s attention 
manager to update the agent’s situation model and instantiate a new goal to build a chair on the 
agent’s goal/plan agenda (Step 7).  When the agenda is prioritized at the next cycle, one of the 
agent’s stored plans for building a chair is selected, and an AMR is generated for the first action in 
the plan: to pick up a dowel (Step 8).  

4. Conclusion 

Our previous work in the area of interpreting “raw” perception signals into signals carrying 
meaning and thus facilitating the agent’s reasoning, concentrated on the analysis of natural 
language. (We have also worked on interpreting interoception signals from a simulated model of 
human physiology, but that task did not involve adaptation to different world views, different 
semantics of knowledge elements or different formalisms: the simulation was developed using the 
same knowledge infrastructure as OntoAgent.) Over the past several years we have expanded our 
attention to interpreting “raw” vision percepts. Conversely, while in the past we addressed only 
verbal action (through our work in text generation), we have expanded into generation of 
instructions for a robotic action system. The XMR infrastructure supports this extended scope of 
work. Our work on natural language has amply demonstrated that language understanding 
sufficient for supporting human-like behavior in robots is only possible when language analysis has 
access to the entire space of knowledge resources in an artificial intelligent agent system. The 
amount of work involved in this task is significant. One of the issues we would like to investigate 
in incorporating other perception interpreters is the extent of the agent’s stored knowledge that is 
necessary for interpreting “raw” perception results to the level when they become actionable.  
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